Induced Pluripotent Stem Cell Therapy in Parkinson’s Disease

Although in the early stages, the potential use of induced pluripotent stem cells (iPSCs) in the treatment of Parkinson’s disease (PD) holds tremendous possibilities for the future. A significant amount of research is still necessary and the practical application of such a treatment option is probably still a long way. However, the promise of acquiring an undifferentiated stem cell from the patient’s body and then stimulating differentiation into a nerve cell may make this sort of therapy one of the more exciting developments in recent years.

What are Pluripotent Stem Cells?

Stem cells are those unspecialized cells that have the potential to develop into different types of cells in our body during early life. There are also some partially differentiated stem cells in different tissues in adults which can replenish worn out cells. The most significant quantity of these cells lie within the hemopoietic tissue where new blood cells are constantly produced. In other tissues, cell replacement is via cell division although small amounts of stem cells will allow for replacement of tissue.

Types of Stem Cells

Embryonic stem cells – all cell types of the body are derived from these cells. These stem cells are also capable of dividing and replicating over a long period of time without differentiating into other cell types. Human embryonic stem cells are derived from human embryos and grown in the laboratory. Present research is aiming at stimulating these stem cells to undergo differentiation into specific cell types which can be used in the treatment of various diseases, including Parkinson’s disease, by transplanting these differentiated cells into specific diseased regions of the body.

Non-embryonic stem cells (adult or somatic stem cells) – these are undifferentiated or partially differentiated cells present amongst differentiated cells in a tissue or organ. These stem cells undergo differentiation into cells similar to the neighboring ones only and are mainly involved with tissue repair.

Induced pluripotent stem cells (iPSCs) – specialized adult cells may be reprogrammed genetically (through introduction of embryonic genes) to behave like embryonic stem cells. These are known as induced pluripotent stem cells, which have the potential of differentiating into and generating specific cells and tissues.

Induced Pluripotent Stem Cell Therapy in Parkinson’s Disease

An insufficient number of of dopamine-producing neurons (nerve cells) due to cell degeneration causes the symptoms of Parkinson’s disease. Replacing these cells with other dopaminergic neurons is the basis of iPSC therapy in PD.  Differentiation of the iPSCs into specific cells and generation of new cells may cause improvement in PD.

IPSCs produce a renewable source of replacement cells which may be effective in treating various disorders, including PD. By using the patient’s own adult stem cells to produce these iPSCs, chances of rejection by the immune system are greatly reduced. Cells generated from human iPSCs may be used to test the efficacy and safety of new drugs. Development of the disease process may be studied and better understood, thus helping in finding new ways of controlling and preventing the disease.

Challenges of iPSC Therapy

Scientists face the challenge of controlling the development of iPSCs into different cells in the body. Ethical issues also need to  be addressed although iPSC therapy is less contentious since embryonic stem cells from discarded fertilized embryos are not used.

Before iPSCs can be used successfully in therapy for Parkinson’s disease or any other disorder, certain points have to be kept in mind, which are very essential if transplantation and grafting are to be effective during treatment. The iPSCs should :

  • Survive in the recipient after transplant.
  • Integrate into the surrounding tissue after transplant.
  • Function properly for the duration of the patient’s life.
  • Cause no harm to the recipient.
  • Viruses used to introduce the reprogramming factors into adult cells in animals may have other health consequences and the safety in humans needs to be considered.

Related Articles

  1. Would Stem Cell Therapy Be a Parkinson’s Cure?


  1. This is exciting news IPS and its potential to cure a significant number of diseases. Where is the research being done and do they need volunteers to participate in clinical studies?

1 Trackback / Pingback

  1. Stem Cell Clinics for Parkinson's Disease Treatment | - A-Z Parkinsons disease information: Parkinsons disease symptom, treatment, exercise & medication.

Leave a Reply

Your email address will not be published.